[Snort-users] Snort 2.8.5.3 does not like default global telnet config??

Joe Pampel jpampel at ...14829...
Tue Apr 20 23:50:56 EDT 2010


Hi Joel,

My ftp_telnet config matches yours (default).

preprocessor ftp_telnet: global \
   encrypted_traffic yes \
   inspection_type stateful


Here is the whole thing, i just removed all the subnets/hosts in the declarations up top. The rest is default.

Thanks,

Joe

++++++++++++++++
MY-IDS@/usr/local/etc: cat snort.conf
#--------------------------------------------------
#   http://www.snort.org     Snort 2.8.5.3 Ruleset
#     Contact: snort-sigs at lists.sourceforge.net
#--------------------------------------------------
# $Id$
#
###################################################
# This file contains a sample snort configuration.
# You can take the following steps to create your own custom configuration:
#
#  1) Set the variables for your network
#  2) Configure dynamic loaded libraries
#  3) Configure preprocessors
#  4) Configure output plugins
#  5) Add any runtime config directives
#  6) Customize your rule set
#
###################################################
# Step #1: Set the network variables:
#
# You must change the following variables to reflect your local network. The
# variable is currently setup for an RFC 1918 address space.
#
# You can specify it explicitly as:
#
# var HOME_NET 10.1.1.0/24
#
# if Snort is built with IPv6 support enabled (--enable-ipv6), use:
#
# ipvar HOME_NET 10.1.1.0/24
#
# or use global variable $<interfacename>_ADDRESS which will be always
# initialized to IP address and netmask of the network interface which you run
# snort at.  Under Windows, this must be specified as
# $(<interfacename>_ADDRESS), such as:
# $(\Device\Packet_{12345678-90AB-CDEF-1234567890AB}_ADDRESS)
#
# var HOME_NET $eth0_ADDRESS
#
# You can specify lists of IP addresses for HOME_NET
# by separating the IPs with commas like this:
#
var HOME_NET [1.2.3.0/24]
#
# MAKE SURE YOU DON'T PLACE ANY SPACES IN YOUR LIST!
#
# or you can specify the variable to be any IP address
# like this:

#var HOME_NET any

# Set up the external network addresses as well.  A good start may be "any"
var EXTERNAL_NET [!$HOME_NET]

# Configure your server lists.  This allows snort to only look for attacks to
# systems that have a service up.  Why look for HTTP attacks if you are not
# running a web server?  This allows quick filtering based on IP addresses
# These configurations MUST follow the same configuration scheme as defined
# above for $HOME_NET.

# List of DNS servers on your network
var DNS_SERVERS $HOME_NET

# List of SMTP servers on your network
var SMTP_SERVERS $HOME_NET

# List of web servers on your network
var HTTP_SERVERS $HOME_NET

# List of sql servers on your network
var SQL_SERVERS $HOME_NET

# List of telnet servers on your network
var TELNET_SERVERS $HOME_NET

# List of telnet servers on your network
var FTP_SERVERS $HOME_NET

# List of snmp servers on your network
var SNMP_SERVERS $HOME_NET

# Configure your service ports.  This allows snort to look for attacks destined
# to a specific application only on the ports that application runs on.  For
# example, if you run a web server on port 8180, set your HTTP_PORTS variable
# like this:
#
# portvar HTTP_PORTS 8180
#
# Ports you run web servers on
portvar HTTP_PORTS 80

# NOTE:  If you wish to define multiple HTTP ports, use the portvar
# syntax to represent lists of ports and port ranges.  Examples:
## portvar HTTP_PORTS [80,8080]
## portvar HTTP_PORTS [80,8000:8080]
# And only include the rule that uses $HTTP_PORTS once.
#
# The pre-2.8.0 approach of redefining the variable to a different port and
# including the rules file twice is obsolete.  See README.variables for more
# details.

# Ports you want to look for SHELLCODE on.
portvar SHELLCODE_PORTS !80

# Ports you might see oracle attacks on
portvar ORACLE_PORTS 1521

# Ports for FTP servers
portvar FTP_PORTS 21

# other variables
#
# AIM servers.  AOL has a habit of adding new AIM servers, so instead of
# modifying the signatures when they do, we add them to this list of servers.
var AIM_SERVERS [64.12.24.0/23,64.12.28.0/23,64.12.161.0/24,64.12.163.0/24,64.12.200.0/24,205.188.3.0/24,205.188.5.0/24,205.188.7.0/24,205.188.9.0/24,205.188.153.0/24,205.188.179.0/24,205.188.248.0/24]

# Path to your rules files (this can be a relative path)
# Note for Windows users:  You are advised to make this an absolute path,
# such as:  c:\snort\rules
var RULE_PATH rules
var PREPROC_RULE_PATH /usr/local/etc/preproc_rules

# Configure the snort decoder
# ============================
#
# Snort's decoder will alert on lots of things such as header
# truncation or options of unusual length or infrequently used tcp options
#
#
# Stop generic decode events:
#
# config disable_decode_alerts
#
# Stop Alerts on experimental TCP options
# ** to stop MD5 BGP alerts **
config disable_tcpopt_experimental_alerts
#
# Stop Alerts on obsolete TCP options
#
# config disable_tcpopt_obsolete_alerts
#
# Stop Alerts on T/TCP alerts
#
# In snort 2.0.1 and above, this only alerts when a TCP option is detected
# that shows T/TCP being actively used on the network.  If this is normal
# behavior for your network, disable the next option.
#
# config disable_tcpopt_ttcp_alerts
#
# Stop Alerts on all other TCPOption type events:
#
# config disable_tcpopt_alerts
#
# Stop Alerts on invalid ip options
#
# config disable_ipopt_alerts
#
# Alert if value in length field (IP, TCP, UDP) is greater than the
# actual length of the captured portion of the packet that the length
# is supposed to represent:
#
# config enable_decode_oversized_alerts
#
# Same as above, but drop packet if in Inline mode -
# enable_decode_oversized_alerts must be enabled for this to work:
#
# config enable_decode_oversized_drops
#

# Configure the detection engine
# ===============================
#
# Use a different pattern matcher in case you have a machine with very limited
# resources:
#
# config detection: search-method lowmem

# Configure Inline Resets
# ========================
#
# If running an iptables firewall with snort in InlineMode() we can now
# perform resets via a physical device. We grab the indev from iptables
# and use this for the interface on which to send resets. This config
# option takes an argument for the src mac address you want to use in the
# reset packet.  This way the bridge can remain stealthy. If the src mac
# option is not set we use the mac address of the indev device. If we
# don't set this option we will default to sending resets via raw socket,
# which needs an ipaddress to be assigned to the int.
#
# config layer2resets: 00:06:76:DD:5F:E3

###################################################
# Step #2: Configure dynamic loaded libraries
#
# If snort was configured to use dynamically loaded libraries,
# those libraries can be loaded here.
#
# Each of the following configuration options can be done via
# the command line as well.
#
# Load all dynamic preprocessors from the install path
# (same as command line option --dynamic-preprocessor-lib-dir)
#
dynamicpreprocessor directory /usr/local/lib/snort_dynamicpreprocessor/
#
# Load a specific dynamic preprocessor library from the install path
# (same as command line option --dynamic-preprocessor-lib)
#
# dynamicpreprocessor file /usr/local/lib/snort_dynamicpreprocessor/libdynamicexample.so
#
# Load a dynamic engine from the install path
# (same as command line option --dynamic-engine-lib)
#
dynamicengine /usr/local/lib/snort_dynamicengine/libsf_engine.so
#
# Load all dynamic rules libraries from the install path
# (same as command line option --dynamic-detection-lib-dir)
#
# dynamicdetection directory /usr/local/lib/snort_dynamicrule/
#
# Load a specific dynamic rule library from the install path
# (same as command line option --dynamic-detection-lib)
#
# dynamicdetection file /usr/local/lib/snort_dynamicrule/libdynamicexamplerule.so
#

###################################################
# Step #3: Configure preprocessors
#
# General configuration for preprocessors is of
# the form
# preprocessor <name_of_processor>: <configuration_options>

# frag3: Target-based IP defragmentation
# --------------------------------------
#
# Frag3 is a brand new IP defragmentation preprocessor that is capable of
# performing "target-based" processing of IP fragments.  Check out the
# README.frag3 file in the doc directory for more background and configuration
# information.
#
# Frag3 configuration is a two step process, a global initialization phase
# followed by the definition of a set of defragmentation engines.
#
# Global configuration defines the number of fragmented packets that Snort can
# track at the same time and gives you options regarding the memory cap for the
# subsystem or, optionally, allows you to preallocate all the memory for the
# entire frag3 system.
#
# frag3_global options:
#   max_frags: Maximum number of frag trackers that may be active at once.
#              Default value is 8192.
#   memcap: Maximum amount of memory that frag3 may access at any given time.
#           Default value is 4MB.
#   prealloc_frags: Maximum number of individual fragments that may be processed
#                   at once.  This is instead of the memcap system, uses static
#                   allocation to increase performance.  No default value.  Each
#                   preallocated fragment typically eats ~1550 bytes.  However,
#                   the exact amount is determined by the snaplen, and this can
#                   go as high as 64K so beware!
#
# Target-based behavior is attached to an engine as a "policy" for handling
# overlaps and retransmissions as enumerated in the Paxson paper.  There are
# currently five policy types available: "BSD", "BSD-right", "First", "Linux"
# and "Last".  Engines can be bound to standard Snort CIDR blocks or
# IP lists.
#
# frag3_engine options:
#   timeout: Amount of time a fragmented packet may be active before expiring.
#            Default value is 60 seconds.
#   ttl_limit: Limit of delta allowable for TTLs of packets in the fragments.
#              Based on the initial received fragment TTL.
#   min_ttl: Minimum acceptable TTL for a fragment, frags with TTLs below this
#            value will be discarded.  Default value is 0.
#   detect_anomalies: Activates frag3's anomaly detection mechanisms.
#   policy: Target-based policy to assign to this engine.  Default is BSD.
#   bind_to: IP address set to bind this engine to.  Default is all hosts.
#
# Frag3 configuration example:
#preprocessor frag3_global: max_frags 65536, prealloc_frags 65536
#preprocessor frag3_engine: policy linux \
#                           bind_to [10.1.1.12/32,10.1.1.13/32] \
#                           detect_anomalies
#preprocessor frag3_engine: policy first \
#                           bind_to 10.2.1.0/24 \
#                           detect_anomalies
#preprocessor frag3_engine: policy last \
#                           bind_to 10.3.1.0/24
#preprocessor frag3_engine: policy bsd

preprocessor frag3_global: max_frags 65536
preprocessor frag3_engine: policy first detect_anomalies overlap_limit 10

# stream5: Target Based stateful inspection/stream reassembly for Snort
# ---------------------------------------------------------------------
# Stream5 is a target-based stream engine for Snort.  It handles both
# TCP and UDP connection tracking as well as TCP reassembly.
#
# See README.stream5 for details on the configuration options.
#
# Example config
preprocessor stream5_global: max_tcp 8192, track_tcp yes, \
                              track_udp no
preprocessor stream5_tcp: policy first, use_static_footprint_sizes
# preprocessor stream5_udp: ignore_any_rules


# Performance Statistics
# ----------------------
# Documentation for this is provided in the Snort Manual.  You should read it.
# It is included in the release distribution as doc/snort_manual.pdf
#
# preprocessor perfmonitor: time 300 file /var/snort/snort.stats pktcnt 10000

# http_inspect: normalize and detect HTTP traffic and protocol anomalies
#
# lots of options available here. See doc/README.http_inspect.
# unicode.map should be wherever your snort.conf lives, or given
# a full path to where snort can find it.
preprocessor http_inspect: global \
    iis_unicode_map unicode.map 1252

preprocessor http_inspect_server: server default \
    profile all ports { 80 8080 8180 } oversize_dir_length 500

#
#  Example unique server configuration
#
#preprocessor http_inspect_server: server 1.1.1.1 \
#    ports { 80 3128 8080 } \
#    server_flow_depth 0 \
#    ascii no \
#    double_decode yes \
#    non_rfc_char { 0x00 } \
#    chunk_length 500000 \
#    non_strict \
#    oversize_dir_length 300 \
#    no_alerts


# rpc_decode: normalize RPC traffic
# ---------------------------------
# RPC may be sent in alternate encodings besides the usual 4-byte encoding
# that is used by default. This plugin takes the port numbers that RPC
# services are running on as arguments - it is assumed that the given ports
# are actually running this type of service. If not, change the ports or turn
# it off.
# The RPC decode preprocessor uses generator ID 106
#
# arguments: space separated list
# alert_fragments - alert on any rpc fragmented TCP data
# no_alert_multiple_requests - don't alert when >1 rpc query is in a packet
# no_alert_large_fragments - don't alert when the fragmented
#                            sizes exceed the current packet size
# no_alert_incomplete - don't alert when a single segment
#                       exceeds the current packet size

preprocessor rpc_decode: 111 32771

# bo: Back Orifice detector
# -------------------------
# Detects Back Orifice traffic on the network.
#
# arguments:
#   syntax:
#     preprocessor bo: noalert { client | server | general | snort_attack } \
#                      drop    { client | server | general | snort_attack }
#   example:
#     preprocessor bo: noalert { general server } drop { snort_attack }
#
#
# The Back Orifice detector uses Generator ID 105 and uses the
# following SIDS for that GID:
#  SID     Event description
# -----   -------------------
#   1       Back Orifice traffic detected
#   2       Back Orifice Client Traffic Detected
#   3       Back Orifice Server Traffic Detected
#   4       Back Orifice Snort Buffer Attack

preprocessor bo

# ftp_telnet: FTP & Telnet normalizer, protocol enforcement and buff overflow
# ---------------------------------------------------------------------------
# This preprocessor normalizes telnet negotiation strings from telnet and
# ftp traffic.  It looks for traffic that breaks the normal data stream
# of the protocol, replacing it with a normalized representation of that
# traffic so that the "content" pattern matching keyword can work without
# requiring modifications.
#
# It also performs protocol correctness checks for the FTP command channel,
# and identifies open FTP data transfers.
#
# FTPTelnet has numerous options available, please read
# README.ftptelnet for help configuring the options for the global
# telnet, ftp server, and ftp client sections for the protocol.

#####
# Per Step #2, set the following to load the ftptelnet preprocessor
# dynamicpreprocessor file /usr/local/lib/snort_dynamicpreprocessor/libsf_ftptelnet_preproc.so
# <full path to libsf_ftptelnet_preproc.so>
# or use commandline option
# --dynamic-preprocessor-lib <full path to libsf_ftptelnet_preproc.so>

preprocessor ftp_telnet: global \
   encrypted_traffic yes \
   inspection_type stateful

preprocessor ftp_telnet_protocol: telnet \
   normalize \
   ayt_attack_thresh 200

# This is consistent with the FTP rules as of 18 Sept 2004.
# CWD can have param length of 200
# MODE has an additional mode of Z (compressed)
# Check for string formats in USER & PASS commands
# Check nDTM commands that set modification time on the file.
preprocessor ftp_telnet_protocol: ftp server default \
   def_max_param_len 100 \
   alt_max_param_len 200 { CWD } \
   cmd_validity MODE < char ASBCZ > \
   cmd_validity MDTM < [ date nnnnnnnnnnnnnn[.n[n[n]]] ] string > \
   chk_str_fmt { USER PASS RNFR RNTO SITE MKD } \
   telnet_cmds yes \
   data_chan

preprocessor ftp_telnet_protocol: ftp client default \
   max_resp_len 256 \
   bounce yes \
   telnet_cmds yes

# smtp: SMTP normalizer, protocol enforcement and buffer overflow
# ---------------------------------------------------------------------------
# This preprocessor normalizes SMTP commands by removing extraneous spaces.
# It looks for overly long command lines, response lines, and data header lines.
# It can alert on invalid commands, or specific valid commands.  It can optionally
# ignore mail data, and can ignore TLS encrypted data.
#
# SMTP has numerous options available, please read README.SMTP for help
# configuring options.

#####
# Per Step #2, set the following to load the smtp preprocessor
# dynamicpreprocessor file <full path to libsf_smtp_preproc.so>
# or use commandline option
# --dynamic-preprocessor-lib <full path to libsf_smtp_preproc.so>

preprocessor smtp: \
  ports { 25 587 691 } \
  inspection_type stateful \
  normalize cmds \
  normalize_cmds { EXPN VRFY RCPT } \
  alt_max_command_line_len 260 { MAIL } \
  alt_max_command_line_len 300 { RCPT } \
  alt_max_command_line_len 500 { HELP HELO ETRN } \
  alt_max_command_line_len 255 { EXPN VRFY }

# sfPortscan
# ----------
# Portscan detection module.  Detects various types of portscans and
# portsweeps.  For more information on detection philosophy, alert types,
# and detailed portscan information, please refer to the README.sfportscan.
#
# -configuration options-
#     proto { tcp udp icmp ip all }
#       The arguments to the proto option are the types of protocol scans that
#       the user wants to detect.  Arguments should be separated by spaces and
#       not commas.
#     scan_type { portscan portsweep decoy_portscan distributed_portscan all }
#       The arguments to the scan_type option are the scan types that the
#       user wants to detect.  Arguments should be separated by spaces and not
#       commas.
#     sense_level { low|medium|high }
#       There is only one argument to this option and it is the level of
#       sensitivity in which to detect portscans.  The 'low' sensitivity
#       detects scans by the common method of looking for response errors, such
#       as TCP RSTs or ICMP unreachables.  This level requires the least
#       tuning.  The 'medium' sensitivity level detects portscans and
#       filtered portscans (portscans that receive no response).  This
#       sensitivity level usually requires tuning out scan events from NATed
#       IPs, DNS cache servers, etc.  The 'high' sensitivity level has
#       lower thresholds for portscan detection and a longer time window than
#       the 'medium' sensitivity level.  Requires more tuning and may be noisy
#       on very active networks.  However, this sensitivity levels catches the
#       most scans.
#     memcap { positive integer }
#       The maximum number of bytes to allocate for portscan detection.  The
#       higher this number the more nodes that can be tracked.
#     logfile { filename }
#       This option specifies the file to log portscan and detailed portscan
#       values to.  If there is not a leading /, then snort logs to the
#       configured log directory.  Refer to README.sfportscan for details on
#       the logged values in the logfile.
#     watch_ip { Snort IP List }
#     ignore_scanners { Snort IP List }
#     ignore_scanned { Snort IP List }
#       These options take a snort IP list as the argument.  The 'watch_ip'
#       option specifies the IP(s) to watch for portscan.  The
#       'ignore_scanners' option specifies the IP(s) to ignore as scanners.
#       Note that these hosts are still watched as scanned hosts.  The
#       'ignore_scanners' option is used to tune alerts from very active
#       hosts such as NAT, nessus hosts, etc.  The 'ignore_scanned' option
#       specifies the IP(s) to ignore as scanned hosts.  Note that these hosts
#       are still watched as scanner hosts.  The 'ignore_scanned' option is
#       used to tune alerts from very active hosts such as syslog servers, etc.
#     detect_ack_scans
#       This option will include sessions picked up in midstream by the stream
#       module, which is necessary to detect ACK scans.  However, this can lead to
#       false alerts, especially under heavy load with dropped packets; which is why
#       the option is off by default.
#
preprocessor sfportscan: proto  { all } \
                         memcap { 10000000 } \
                         sense_level { low }

# arpspoof
#----------------------------------------
# Experimental ARP detection code from Jeff Nathan, detects ARP attacks,
# unicast ARP requests, and specific ARP mapping monitoring.  To make use of
# this preprocessor you must specify the IP and hardware address of hosts on
# the same layer 2 segment as you.  Specify one host IP MAC combo per line.
# Also takes a "-unicast" option to turn on unicast ARP request detection.
# Arpspoof uses Generator ID 112 and uses the following SIDS for that GID:

#  SID     Event description
# -----   -------------------
#   1       Unicast ARP request
#   2       Etherframe ARP mismatch (src)
#   3       Etherframe ARP mismatch (dst)
#   4       ARP cache overwrite attack

#preprocessor arpspoof
#preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f:00:f0:0f:00

# ssh
# ------------------------------
# The SSH preprocessor detects the following exploits: Challenge-Response
# Authentication overflow, CRC 32 overflow, Secure CRT version string overflow,
# and protocol version mismatches.
#
# Both Challenge-Response Auth and CRC 32 attacks occur after the key exchange,
# and are therefore encrypted.  Both attacks involve sending a large payload
# (20kb+) to the server immediately after the authentication challenge.
# To detect the attacks, the SSH preprocessor counts the number of bytes
# transmitted to the server.  If those bytes exceed a pre-defined limit,
# set by the option "max_client_bytes", an alert is generated. Since
# the Challenge-Response Auth overflow only affects SSHv2, while CRC 32 only
# affects SSHv1, the SSH version string exchange is used to distinguish
# the attacks.
#
# The Secure CRT and protocol mismatch exploits are observable before
# the key exchange.
#
# SSH has numerous options available, please read README.ssh for help
# configuring options.

#####
# Per Step #2, set the following to load the ssh preprocessor
# dynamicpreprocessor file <full path to libsf_ssh_preproc.so>
# or use commandline option
# --dynamic-preprocessor-lib <full path to libsf_ssh_preproc.so>
#
preprocessor ssh: server_ports { 22 } \
                  max_client_bytes 19600 \
                  max_encrypted_packets 20 \
                  enable_respoverflow enable_ssh1crc32 \
                  enable_srvoverflow enable_protomismatch

# DCE/RPC
#----------------------------------------
#
# The dcerpc preprocessor detects and decodes SMB and DCE/RPC traffic.
# It is primarily interested in DCE/RPC data, and only decodes SMB
# to get at the DCE/RPC data carried by the SMB layer.
#
# Currently, the preprocessor only handles reassembly of fragmentation
# at both the SMB and DCE/RPC layer.  Snort rules can be evaded by
# using both types of fragmentation; with the preprocessor enabled
# the rules are given a buffer with a reassembled SMB or DCE/RPC
# packet to examine.
#
# At the SMB layer, only fragmentation using WriteAndX is currently
# reassembled.  Other methods will be handled in future versions of
# the preprocessor.
#
# Autodetection of SMB is done by looking for "\xFFSMB" at the start of
# the SMB data, as well as checking the NetBIOS header (which is always
# present for SMB) for the type "SMB Session".
#
# Autodetection of DCE/RPC is not as reliable.  Currently, two bytes are
# checked in the packet.  Assuming that the data is a DCE/RPC header,
# one byte is checked for DCE/RPC version (5) and another for the type
# "DCE/RPC Request".  If both match, the preprocessor proceeds with that
# assumption that it is looking at DCE/RPC data.  If subsequent checks
# are nonsensical, it ends processing.
#
# DCERPC has numerous options available, please read README.dcerpc for help
# configuring options.

#####
# Per Step #2, set the following to load the dcerpc preprocessor
# dynamicpreprocessor file <full path to libsf_dcerpc_preproc.so>
# or use commandline option
# --dynamic-preprocessor-lib <full path to libsf_dcerpc_preproc.so>
#
#preprocessor dcerpc: \
#    autodetect \
#    max_frag_size 3000 \
#    memcap 100000


# DCE/RPC 2
#----------------------------------------
# See doc/README.dcerpc2 for explanations of what the
# preprocessor does and how to configure it.
#
preprocessor dcerpc2
preprocessor dcerpc2_server: default


# DNS
#----------------------------------------
# The dns preprocessor (currently) decodes DNS Response traffic
# and detects a few vulnerabilities.
#
# DNS has a few options available, please read README.dns for
# help configuring options.

#####
# Per Step #2, set the following to load the dns preprocessor
# dynamicpreprocessor file <full path to libsf_dns_preproc.so>
# or use commandline option
# --dynamic-preprocessor-lib <full path to libsf_dns_preproc.so>

preprocessor dns: \
    ports { 53 } \
    enable_rdata_overflow

# SSL
#----------------------------------------
# Encrypted traffic should be ignored by Snort for both performance reasons
# and to reduce false positives.  The SSL Dynamic Preprocessor (SSLPP)
# inspects SSL traffic and optionally determines if and when to stop
# inspection of it.
#
# Typically, SSL is used over port 443 as HTTPS.  By enabling the SSLPP to
# inspect port 443, only the SSL handshake of each connection will be
# inspected.  Once the traffic is determined to be encrypted, no further
# inspection of the data on the connection is made.
#
# If you don't necessarily trust all of the SSL capable servers on your
# network, you should remove the "trustservers" option from the configuration.
#
#   Important note: Stream5 should be explicitly told to reassemble
#                   traffic on the ports that you intend to inspect SSL
#                   encrypted traffic on.
#
#   To add reassembly on port 443 to Stream5, use 'port both 443' in the
#   Stream5 configuration.

preprocessor ssl: noinspect_encrypted, trustservers


####################################################################
# Step #4: Configure output plugins
#
# Uncomment and configure the output plugins you decide to use.  General
# configuration for output plugins is of the form:
#
# output <name_of_plugin>: <configuration_options>
#
# alert_syslog: log alerts to syslog
# ----------------------------------
# Use one or more syslog facilities as arguments.  Win32 can also optionally
# specify a particular hostname/port.  Under Win32, the default hostname is
# '127.0.0.1', and the default port is 514.
#
# [Unix flavours should use this format...]
output alert_syslog: LOG_AUTH LOG_ALERT
#
# [Win32 can use any of these formats...]
# output alert_syslog: LOG_AUTH LOG_ALERT
# output alert_syslog: host=hostname, LOG_AUTH LOG_ALERT
# output alert_syslog: host=hostname:port, LOG_AUTH LOG_ALERT

# log_tcpdump: log packets in binary tcpdump format
# -------------------------------------------------
# The only argument is the output file name.
#
# output log_tcpdump: tcpdump.log

# database: log to a variety of databases
# ---------------------------------------
# See the README.database file for more information about configuring
# and using this plugin.
#
# output database: log, mysql, user=root password=test dbname=db host=localhost
# output database: alert, postgresql, user=snort dbname=snort
# output database: log, odbc, user=snort dbname=snort
# output database: log, mssql, dbname=snort user=snort password=test
# output database: log, oracle, dbname=snort user=snort password=test

# unified: Snort unified binary format alerting and logging
# -------------------------------------------------------------
# The unified output plugin provides two new formats for logging and generating
# alerts from Snort, the "unified" format.  The unified format is a straight
# binary format for logging data out of Snort that is designed to be fast and
# efficient.  Used with barnyard (the new alert/log processor), most of the
# overhead for logging and alerting to various slow storage mechanisms such as
# databases or the network can now be avoided.
#
# Check out the spo_unified.h file for the data formats.
#
# Two arguments are supported.
#    filename - base filename to write to (current time_t is appended)
#    limit    - maximum size of spool file in MB (default: 128)
#
# output alert_unified: filename snort.alert, limit 128
# output log_unified: filename snort.log, limit 128


# prelude: log to the Prelude Hybrid IDS system
# ---------------------------------------------
#
# profile = Name of the Prelude profile to use (default is snort).
#
# Snort priority to IDMEF severity mappings:
# high < medium < low < info
#
# These are the default mapped from classification.config:
# info   = 4
# low    = 3
# medium = 2
# high   = anything below medium
#
# output alert_prelude
# output alert_prelude: profile=snort-profile-name


# You can optionally define new rule types and associate one or more output
# plugins specifically to that type.
#
# This example will create a type that will log to just tcpdump.
# ruletype suspicious
# {
#   type log
#   output log_tcpdump: suspicious.log
# }
#
# EXAMPLE RULE FOR SUSPICIOUS RULETYPE:
# suspicious tcp $HOME_NET any -> $HOME_NET 6667 (msg:"Internal IRC Server";)
#
# This example will create a rule type that will log to syslog and a mysql
# database:
# ruletype redalert
# {
#   type alert
#   output alert_syslog: LOG_AUTH LOG_ALERT
#   output database: log, mysql, user=snort dbname=snort host=localhost
# }
#
# EXAMPLE RULE FOR REDALERT RULETYPE:
# redalert tcp $HOME_NET any -> $EXTERNAL_NET 31337 \
#   (msg:"Someone is being LEET"; flags:A+;)

#
# Include classification & priority settings
# Note for Windows users:  You are advised to make this an absolute path,
# such as:  c:\snort\etc\classification.config
#

include classification.config

#
# Include reference systems
# Note for Windows users:  You are advised to make this an absolute path,
# such as:  c:\snort\etc\reference.config
#

include reference.config

####################################################################
# Step #5: Configure snort with config statements
#
# See the snort manual for a full set of configuration references
#
# config flowbits_size: 64
#
# New global ignore_ports config option from Andy Mullican
#
# config ignore_ports: <tcp|udp> <list of ports separated by whitespace>
# config ignore_ports: tcp 21 6667:6671 1356
# config ignore_ports: udp 1:17 53


####################################################################
# Step #6: Customize your rule set
#
# Up to date snort rules are available at http://www.snort.org
#
# The snort web site has documentation about how to write your own custom snort
# rules.

#=========================================
# Include all relevant rulesets here
#
# The following rulesets are disabled by default:
#
#   web-attacks, backdoor, shellcode, policy, porn, info, icmp-info, virus,
#   chat, multimedia, and p2p
#
# These rules are either site policy specific or require tuning in order to not
# generate false positive alerts in most enviornments.
#
# Please read the specific include file for more information and
# README.alert_order for how rule ordering affects how alerts are triggered.
#=========================================

#include $RULE_PATH/local.rules
include $RULE_PATH/bad-traffic.rules
include $RULE_PATH/exploit.rules
include $RULE_PATH/scan.rules
include $RULE_PATH/finger.rules
include $RULE_PATH/ftp.rules
include $RULE_PATH/telnet.rules
include $RULE_PATH/rpc.rules
include $RULE_PATH/rservices.rules
include $RULE_PATH/dos.rules
include $RULE_PATH/ddos.rules
include $RULE_PATH/dns.rules
include $RULE_PATH/tftp.rules

include $RULE_PATH/web-cgi.rules
include $RULE_PATH/web-coldfusion.rules
include $RULE_PATH/web-iis.rules
include $RULE_PATH/web-frontpage.rules
include $RULE_PATH/web-misc.rules
include $RULE_PATH/web-client.rules
include $RULE_PATH/web-php.rules

include $RULE_PATH/sql.rules
include $RULE_PATH/x11.rules
include $RULE_PATH/icmp.rules
include $RULE_PATH/netbios.rules
include $RULE_PATH/misc.rules
include $RULE_PATH/attack-responses.rules
include $RULE_PATH/oracle.rules
include $RULE_PATH/mysql.rules
include $RULE_PATH/snmp.rules

include $RULE_PATH/smtp.rules
include $RULE_PATH/imap.rules
include $RULE_PATH/pop2.rules
include $RULE_PATH/pop3.rules

include $RULE_PATH/nntp.rules
include $RULE_PATH/other-ids.rules
# include $RULE_PATH/web-attacks.rules
# include $RULE_PATH/backdoor.rules
# include $RULE_PATH/shellcode.rules
# include $RULE_PATH/policy.rules
# include $RULE_PATH/porn.rules
# include $RULE_PATH/info.rules
# include $RULE_PATH/icmp-info.rules
# include $RULE_PATH/virus.rules
# include $RULE_PATH/chat.rules
# include $RULE_PATH/multimedia.rules
# include $RULE_PATH/p2p.rules
# include $RULE_PATH/spyware-put.rules
# include $RULE_PATH/specific-threats.rules
#include $RULE_PATH/experimental.rules

# include $PREPROC_RULE_PATH/preprocessor.rules
# include $PREPROC_RULE_PATH/decoder.rules

# Include any thresholding or suppression commands. See threshold.conf in the
# <snort src>/etc directory for details. Commands don't necessarily need to be
# contained in this conf, but a separate conf makes it easier to maintain them.
# Note for Windows users:  You are advised to make this an absolute path,
# such as:  c:\snort\etc\threshold.conf
# Uncomment if needed.
# include threshold.conf

MY-IDS@/usr/local/etc:
++++++++++++++++


On Apr 20, 2010, at 11:28 PM, Joel Esler wrote:

> Can you post your snort.conf?  Of course sanitized for your protection.
>
> The ftp_telnet global config in my snort.conf is the following:
>
> preprocessor ftp_telnet: global \
>   encrypted_traffic yes \
>   inspection_type stateful
>
> J
>
> On Apr 20, 2010, at 7:12 PM, Joe Pampel wrote:
>
>> Hi and thanks!
>>
>> I think what you are saying is that snort.conf was not updated and has stale keywords?
>>
>> I did a diff between the one in the build folders and the production one and there are some interesting changes.
>> Production one looked stale..
>>
>> So I set up a new snort.conf based on the one in the install files and now it is still failing with the same error.
>> At least I am consistent...
>>
>> It has the SSL config now which looks valid:  (per Page #66-67 in manual)
>>
>> preprocessor ssl: noinspect_encrypted, trustservers
>>
>> When I try to run it, it still claims that:
>>
>> ....Portscan Detection Config:
>>   Detect Protocols:  TCP UDP ICMP IP
>>   Detect Scan Type:  portscan portsweep decoy_portscan distributed_portscan
>>   Sensitivity Level: Low
>>   Memcap (in bytes): 10000000
>>   Number of Nodes:   36900
>> ERROR: /usr/local/etc/snort.conf(406) => Invalid keyword 'encrypted_traffic' for 'global' configuration.
>> Fatal Error, Quitting..
>> MY-IDS@/usr/local/bin:
>>
>> I read the snort.conf file and looked at the manual again and I honestly don't see what else I would need to config to get it at least running. The defaults look like they should work without human intervention.
>>
>> should I go back to flipping burgers now? ;)
>>
>>
>> On Apr 20, 2010, at 7:53 PM, Russell Fulton wrote:
>>
>>>
>>> On 21/04/2010, at 11:12 AM, Joe Pampel wrote:
>>>
>>>> Hi,
>>>>
>>>> I upgraded a sensor which was at Snort 2.8.4 to the new version 2.8.5.3
>>>> This is on Solaris 10, x86.  I am logging remotely; there is no local mysql etc.
>>>> It has been running snort stably for over a year now.
>>>>
>>>> Now when I try to run Snort, it chokes on the global telnet config, but there is nothing wrong with it - it is the default.
>>>>
>>>
>>>
>>> nothing wrong with the telnet config -- what you are missing is the new ssl config. see README.ssl
>>>
>>> They have just added the new keywords to the rules.
>>>
>>> R
>>>
>>>
>>
>>
>> The information contained in this correspondence is intended solely for the person or entity entitled to receive the confidential and/or privileged material that it may contain. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, the information in this correspondence (including any attachments) by anyone other than the intended recipient is strictly prohibited. If you believe that you may not be the intended recipient, please destroy and/or delete this correspondence and the attachment(s).
>>
>> ------------------------------------------------------------------------------
>> _______________________________________________
>> Snort-users mailing list
>> Snort-users at lists.sourceforge.net
>> Go to this URL to change user options or unsubscribe:
>> https://lists.sourceforge.net/lists/listinfo/snort-users
>> Snort-users list archive:
>> http://www.geocrawler.com/redir-sf.php3?list=snort-users
>
> --
> Joel Esler
>
>
>
>
>
>
>


The information contained in this correspondence is intended solely for the person or entity entitled to receive the confidential and/or privileged material that it may contain. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, the information in this correspondence (including any attachments) by anyone other than the intended recipient is strictly prohibited. If you believe that you may not be the intended recipient, please destroy and/or delete this correspondence and the attachment(s).




More information about the Snort-users mailing list